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Abstract

Music Emotion Recognition has attracted a lot of academic
research work in recent years because it has a wide range of
applications, including song recommendation and music vi-
sualization. As music is a way for humans to express emotion,
there is a need for a machine to automatically infer the per-
ceived emotion of pieces of music. In this paper, we compare
the accuracy difference between music emotion recognition
models given music pieces as a whole versus music pieces
separated by instruments. To compare the models’ emotion
predictions, which are distributions over valence and arousal
values, we provide a metric that compares two distribution
curves. Using this metric, we provide empirical evidence that
training Random Forest and Convolution Recurrent Neural
Network with mixed instrumental music data conveys a bet-
ter understanding of emotion than training the same models
with music that are separated into each instrumental source.

1 Introduction
Emotion is an important aspect of humans that can have
paramount effects on humans’ motivation. Most of our
daily actions and behaviors are inspired by mood and emo-
tion. Humans also express emotions consciously or uncon-
sciously across time. There are many ways we can express
emotion: through literature, poem, film, conversation, or fa-
cial expression. Music is also a means of transforming the
intensity and variety of emotions to others. In music, we can
hear the happiness in a ballad love song, we can hear the
nostalgia in a slow monotone song, and we can also hear the
joy in a steady, fast-tempo song. Music itself expresses emo-
tion, and some of the emotions are believed to be perceived
more than others (Juslin 2013).

We are living in a high-technology world where we have
computing power from modern processors that automate
many human tasks. In the context of music emotional ex-
pression, one can utilize the enormous computational power
to classify and group songs with the same emotional scheme
together, which can benefit people listening to music. An-
other application of machines in automating music emotion
prediction is to recommend appropriate songs that match the
current listener’s mood. Because we see that machines can
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be utilized in the prediction of music emotions, and such
work can be potentially applied in many fields, we decided
to conduct research on using machines (and machine learn-
ing algorithms) to learn and predict the emotion in music.

However, labeling emotion is a difficult problem be-
cause some of our emotion is deep inside the cognitive un-
consciousness, unarticulated, and linguistically inaccessible
(Izard 2008). In fact, there are a number of instances where
there is a high variance of emotional frequency. Particu-
larly, happiness, sadness, anger, fear, love, and tenderness
are among the top-rated emotions when people listened to
a collection of designated songs (Juslin 2013). Because of
such reasons, we are motivated to study the accuracy of emo-
tion annotation and find metrics that can compare different
emotion predictions to each other.

In this paper, we focus on how machines perceive music
emotions. Diving deeper, we were amazed by the articles
that claim our perception of emotion in music is affected by
the timbre (instrument identity). We found Hailstone et al.
(2009)’s Experiment 1 interesting. Depending on which in-
strument is played (piano - percussion timbre, violin - string
timbre, trumpet - brass timbre, and electronic synthesizer -
“electronic” timbre), people can feel different emotions even
for the same notes and melody, but the intended emotion was
created through the note and melody choices when writing
the piece of music. Therefore, we investigate whether sepa-
rating each instrument’s part of a song as multiple individual
waveforms could help improve the performance of machines
understanding emotion in music in ways that people do.

We hypothesize that training a model with separate in-
struments will better predict the song’s emotion that hu-
mans perceive than training the model with all instruments
together. In order to test this hypothesis with both Convo-
lution Recurrent Neural Network and Random Forest, we
train a model of each type for each dataset and compare the
statistics of the results with the metric we produce. Our key
contributions are procedures for training using songs with
separated instruments and an evaluation method that con-
siders the variance of people’s emotions. We discuss future
work based on our results, which rejected this hypothesis.

2 Background
People can perceive any emotion from a piece of music, and
we cannot accuse that listener of being wrong. Besides our
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personal perception of music, mood can be affected by var-
ious factors such as musical style, response format, or pro-
cedure. Hence, the precision of emotion conveyed by mu-
sic is limited. To label emotion perceived from music, re-
searchers broadly sample emotions that listeners perceive
(Juslin and Laukka 2004). As a result, there are not a lot
of refined datasets constructed, which presents a challenge
for the Music Information Retrieval (MIR) field. Especially
for Music Emotion Recognition (MER) tasks, to assess the
emotion of the song, one has to collect the songs as input
(most of them are not possible because of copyright restric-
tions). According to Aljanaki, Yang, and Soleymani (2017),
emotion is subjective to humans and languages; therefore,
they are difficult to determine.

Different datasets have their own labeling scheme. There
are a lot of emotion labeling schemes such as the emotion
adjective wording scheme from Lin, Yang, and Chen (2011)
or the two-dimensional regression scheme from the datasets
such as in Aljanaki, Yang, and Soleymani (2017) and Zhang
et al. (2018), which utilize the two orthogonal psychology
states that are proposed by Russell (1980). These two or-
thogonal states are valence (i.e., the positiveness of the song)
and arousal (i.e., the energy of the song). Many datasets are
built for the music emotion recognition task using this la-
beling scheme. For instance, the DEAM dataset (Aljanaki,
Yang, and Soleymani 2017) contains 1,802 western pop ex-
cerpts and corresponding valence-arousal annotations. An-
other dataset that uses this scheme is DEAP (Koelstra et al.
2012), which also uses valence-arousal rating as music emo-
tion evaluation.

Regarding audio features, Purwins et al. (2019) men-
tioned that Mel Frequency Cepstral Coefficients (MFCCs)
used to be utilized broadly as input. However, since MFCCs
cause information loss and lack spatial relations, they are
considered unnecessary as deep learning models become in-
creasingly popular. In contrast, spectrograms (log-mel spec-
trum, or constant-Q spectrum) are an image-based feature
of audio that represents the correlation between time and
audio frequency; it has been used widely in predicting mu-
sic emotion with Convolution Neural Network (CNN) (Liu
et al. 2017; Yang et al. 2020; Chowdhury et al. 2019; Dong
et al. 2019). There are other works that extract the low-level
acoustics feature of the song such as pitch, loudness, and
cepstrum (Eyben, Wöllmer, and Schuller 2010). Those fea-
tures are grouped and concatenated into a long feature vec-
tor.

Researchers have tried various methods for MER tasks.
According to a survey by Han et al. (2022), there are two
branches in MER. One branch, static MER, recognizes the
overall emotion of the song; static MER is usually a multi-
class classification problem. The other branch, dynamic
MER, classifies emotions based on the instantaneous mo-
ments throughout the song. Badshah et al. (2017) used a
CNN to estimate the spectrogram features that represent the
sounds related to speech in order to predict the text corre-
sponding to that sound. Vempala and Russo (2018) also pro-
posed a shallow Neural Network (Meta Cognitive Network)
whose input features used Principal Components Analysis
to reduce their dimension.

3 Methods
In this section, we first describe the dataset and techniques
we used to extract features from the raw music waveform.
We then discuss the Convolution Recurrent Neural Network
and Random Forest models in detail.

Dataset
Past MER research concluded that there are several factors
that differentiate the emotion described by the song from
the emotion felt by humans (Gabrielsson 2002; Song et al.
2016). Therefore, we must consider which type of emotion
was assessed in a dataset and determine whether it aligns
with the type of emotion we intend to study. In order to
describe the difference between training machine learning
models on music with all instruments at once or separate in-
struments, we investigated the datasets containing human-
perceived emotion annotations because we want to inves-
tigate whether there are any differences in describing the
song’s emotion as a whole versus as a combination of sepa-
rated instrumental sources.

In the scheme of this research, we choose to conduct our
experiment on the PMEmo dataset (Zhang et al. 2018). The
dataset consists of 794 45-second-long pieces of music in the
raw waveform format. The emotions are annotated accord-
ing to Russell’s emotional scheme (Russell 1980). In par-
ticular, participants were given a platform where they could
grade two emotional dimensions–valence and arousal–on a
9-point Likert scale that was then normalized from 0 to 1.
There were a total of 457 subjects in the PMEmo dataset’s
annotation process, and their annotations per song are aggre-
gated in the form of a mean and standard deviation for each
emotional dimension. The individual subject’s responses are
not included in the dataset.

We used a pre-trained model from Wave-U-Net (Stoller,
Ewert, and Dixon 2018) to decompose each song in the
PMEmo dataset into a group of four separate raw instrumen-
tal waveforms (bass, drums, vocal, and others). Originally,
the Wave-U-Net (Stoller, Ewert, and Dixon 2018) model
was trained on MUSDB18 (Rafii et al. 2017) for instru-
mental accompaniments and CCMixter (Liutkus, Fitzgerald,
and Rafii 2015) for music with lyrics training. We also ex-
pect that there is a domain gap between training datasets
(i.e., datasets trained with Wave-U-Net) and the evaluation
dataset (i.e., PMEmo dataset). Particularly, there can be a co-
variate shift between MUSDB18 and PMEmo dataset (i.e.,
the MUSDB18 dataset’s collection music cannot generalize
well enough for all waveform inputs due to representation
bias). Additionally, the MUSDB18 dataset has an imbalance
among its label instruments. That is, the ‘Vocal’, ‘Bass’, and
‘Drum’ labels are separated as standalone instruments, but
the ‘Other Instruments’ label contains everything else with-
out separating them. We acknowledge the dataset shift and
imbalance concerns when we apply this particular Wave-U-
Net model to the music samples in the PMEmo dataset. In
this experiment context, we denote “mixed” for the origi-
nal PMEmo dataset waveform with original sound sources
(mixed instrument), and “sep” for the dataset in which each
song’s waveform in the PMEmo dataset is separated into

16079



Figure 1: Convolution Neural Network with Long Short-term Memory Heads

four instruments (vocal, bass, drum, and others) using the
Wave-U-Net pre-trained model.

Feature Extraction
We must extract appropriate features from the waveform
data to estimate a song’s emotion. The choice of features
directly affects the model’s prediction capabilities.

Several related research works used spectrograms as their
input feature to the convolutional training system (Liu et al.
2017; Yang et al. 2020; Chowdhury et al. 2019; Dong et al.
2019). In the scheme of training the Convolution Recurrent
Neural Network model, we chose to use the spectrogram
feature that was computed by Short-time Fourier Transform
with input from the raw waveform of the music. Originally,
the raw music waveform is 1-dimensional data that describes
how many decibels a particular sample at a time step has
(e.g., how loud the sample is at one point in time). With a
Short-time Fourier Transformation of that data to Spectro-
gram data, the feature becomes 2-dimensional as with each
point in time, there is a vector of features that describe the
energy at each audible sound frequency.

For the Random Forest training system, we were inspired
by Schuller et al. (2016), who proposed a set of features for
automatic paralinguistic phenomena detection. It was used
in the PMEmo dataset (Zhang et al. 2018). We used OpenS-
MILE (Eyben, Wöllmer, and Schuller 2010) to extract fea-
tures with the ComParE 2016 feature set, which extracts fea-
tures with a 6373-dimension scale at OpenSMILE’s Func-
tionals level. We ran OpenSMILE on both mixed (original)
and separated (vocal, bass, drum, and “other” instruments)
waveform data.

Convolution Recurrent Neural Network
One of our chosen extracted features is the spectrogram rep-
resentation of the raw waveform existing in the form of two-

dimensional data, and the spectrogram has its image patterns
varied across different frequencies in the time axis according
to the different timbres of the sound (Badshah et al. 2017).
Therefore, we believe that it makes sense for our model to
reason from such features using an image feature extraction
technique. Furthermore, past research in music emotion pre-
diction also utilizes this image-like nature and uses convo-
lution to extract the time-frequency features of the music
(Malik et al. 2017; Hizlisoy, Yildirim, and Tufekci 2021).
Thus, we chose to use multiple blocks of convolution layers
to extract these features into a latent vector.

When using convolutions to interpolate and downsize the
spectrogram features, the nature of the spectrogram’s time
axis does not change. When reducing the frequency axis of
the feature to 1, we had a vector with the downsized time
axis and a channel axis (i.e., represents the frequency fea-
tures through neurons). At this stage, we had a matrix in
which there is a latent vector of hidden features that rep-
resents the latent data at each timestamp. We used Long
Short-term Memory (Hochreiter and Schmidhuber 1997) for
the model to reason over the temporal data given the fea-
ture vectors at each point in time. The reason we chose
Long Short-term Memory over Recurrent Neural Network
is that it has multiple gates that add or remove weights from
the memory cell, which helps the network retain both long-
term and short-term memory in a long sequence such as
audio waveform data. Additionally, Hizlisoy, Yildirim, and
Tufekci (2021) also made use of the Long Short-term Mem-
ory in their music emotion prediction network.

After reasoning with the temporal knowledge to output
a latent vector, we use a combination of linear (i.e, Dense
Layer) and non-linear (i.e, Rectified Linear Unit) transfor-
mations to compute the result vector. This vector has four
values corresponding to the input music’s emotion predic-
tion: mean valence, mean arousal, standard deviation of va-
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lence, and standard deviation of arousal.
Lastly, because we are fitting a regression model where

we have to estimate these statistical parameters describing
the song’s emotion, we use the last layer as a normal linear
transformation layer to compute loss by the Mean Square
Error function. The derivative of the loss with respect to the
weights of the model is then computed, and the model is
fitted with an optimization function as in the backpropaga-
tion process (Rumelhart, Hinton, and Williams 1986). The
detailed architecture of the network is described in Figure 1
and the Experiment section (Section 4).

Random Forest
It is necessary to determine and narrow down correlated fea-
tures as a preprocessing step before performing a regression
model. However, it is difficult to perform feature selection
on the whole feature set because it has a large number of fea-
tures, more than 6000 from the mixed dataset and more than
25000 from the separated dataset. Therefore, Random Forest
is our choice since Cutler, Cutler, and Stevens (2011) stated
that the Random Forest algorithm is robust against high-
dimensional problems and less susceptible to multicollinear-
ity. Furthermore, Random Forest is made up of multiple De-
cision Trees, which helps solve bias or overfitting problems
(Breiman 2001).

Validation Method
To validate the models’ performance, we rejected using
Hold-Out Validation since Refaeilzadeh, Tang, and Liu sug-
gested that it creates data in the training set that is not
enough to train models, which causes skewed results on the
testing data (Refaeilzadeh, Tang, and Liu 2009). Therefore,
we used Monte Carlo Cross-Validation to avoid skewing our
results (Xu and Liang 2001).

KL Divergence between Distributions
We propose a method for comparing the model accuracy
when predicting valence and arousal distribution parame-
ters. The PMEmo dataset only supplies the mean and stan-
dard deviation of all participants’ emotion ratings for each
particular song without describing the distributions’ shapes.
Without this information, we choose to assume the distri-
bution parameters define a multivariate normal distribution.
That is, we assume that the PMEmo dataset’s emotion values
per song across participants are normally distributed. The
PMEmo dataset further provides valence and arousal means
and standard deviations independently of each other (Zhang
et al. 2018). Without a way to determine the covariance re-
lationship between the valence and arousal, we also assume
that there is no covariance between the valence distribution
and the arousal distribution per song.

Combining our assumptions, the annotated emotion (i.e.,
valence and arousal) for each song would most likely form
an ellipse-shaped region around a point (the means) whose
axes represent the variance around it (the standard devia-
tions). That is, we assume each song’s emotion is a mul-
tivariate normal distribution. Therefore, KL Divergence, a
measure of how two distributions are different from each

other (Kullback and Leibler 1951), is suitable to measure
how our models’ predictions are different from the ground
truth. We first obtained all the prediction results from eval-
uating each model with the same test set, and then we com-
puted the KL Divergence that the predicted emotion distri-
bution Q has from the ground truth emotion distribution P .
As multivariate normal distributions, we can compute the
KL Divergence as (Soch et al. 2020):

P = N (µ1, Σ1)

Q = N (µ2, Σ2)

KL[P ||Q] =
1

2

[
(µ2 − µ1)T Σ−1

2 (µ2 − µ1)

+tr(Σ−1
2 Σ1)− ln

|Σ1|
|Σ2|

− n

]
.

(1)

Note that in Equation 1, µ1 and µ2 represent the mean
ground truth emotion and mean predicted emotion, respec-
tively. µ1 and µ2 are vectors of length two with statistics:
mean valence and mean arousal. n is the number of dis-
tribution dimensions, which is 2 in our case for valence
and arousal. For each song, Σ1 is the covariance matrix of
the ground truth valence distribution and the ground truth
arousal distribution and Σ2 is the covariance matrix of the
predicted valence distribution and the predicted arousal dis-
tribution. Within the variance notation σ2, we use v for va-
lence, a for arousal, gt for ground truth, and pr for predic-
tion:

Σ1 =

(
σ2
gt,v 0
0 σ2

gt,a

)
; Σ2 =

(
σ2
pr,v 0
0 σ2

pr,a

)
(2)

After computing the KL Divergence for all the test set’s
songs’ emotion distributions, we can compare the perfor-
mance of the models using “mixed” and “sep” audio wave-
form representations for each corresponding song. When a
single KL Divergence for one model (e.g., model trained on
“sep” dataset) is smaller than the other model’s correspond-
ing KL Divergence, it means that that model’s emotion dis-
tribution prediction is closer to the ground truth emotion dis-
tribution for that song. Therefore, to see which model (ei-
ther model trained on “mixed” or “sep” dataset) performs
better (i.e., has a lower distribution distance to the ground
truth overall), we can compute the mean E and median M
statistics for all the KL Divergences that were computed in
the test dataset for both “mixed” and “sep” dataset. For ex-
ample, with m as the number of songs in a particular test
dataset, and KL[P ||Q]i as the particular KL Divergence at
the song i, we have the following expected value formula:

E =
1

m

m∑
i=1

KL[P ||Q]i (3)

We also want to determine whether the “mixed” and “sep”
models’ KL Divergence distributions over all songs are sig-
nificantly different from each other before concluding that
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Figure 2: Convolution Recurrent Neural Network’s mean
training and validation loss among 10-iteration cross-
validation for the model trained with “mixed” dataset.

Figure 3: Convolution Recurrent Neural Network’s mean
training and validation loss among 10-iteration cross-
validation for the model trained with “sep” dataset.

one model performs MER better. For each model, we aggre-
gated each song’s KL Divergences and plotted histograms of
the KL Divergences to visualize their distribution across the
songs in the test set. Since we saw that the KL Divergence
distributions are not normal distributions (Figure 4), we use
the Wilcoxon Signed Rank Test rather than the two-sample
t-test. This test computes the probability that the two KL Di-
vergence distributions for each model and cross-validation
iteration are similar. A probability of 0 implies that the two
distributions’ means are totally different, and a probability
of 1 implies that the two distributions’ means are totally the
same.

4 Experiment
Before the experiment, we needed to preprocess the dataset.
We converted every waveform to 44.1 Khz in the “.wav” for-
mat. We then used the Wave-U-Net pre-trained model that
was previously trained on the MUSDB18 dataset to segment
the waveforms in the PMEmo dataset.

For the Monte Carlo Cross-Validation, we shuffled the
songs in the dataset per iteration. After shuffling, we split
the dataset into a training set and testing set with the ratio
8:2, respectively. We repeated this process ten times to cre-
ate ten different training and testing sets (i.e., trained and
tested ten versions of each model).

A pair of Convolution Recurrent Neural Networks with

the architecture proposed in Figure 1 were trained on each
“mixed” and “sep” version of the waveform data. The raw
waveform is converted to spectrogram form with the 129 fre-
quency features for each time point. To determine how many
time points a 45-second-long song has, we performed a scan
through all instances of the dataset and converted them into
spectrograms first. We took the max-length spectrogram of
all the waveform instances and then padded all the other
spectrograms with zeros on the end. By this method, the de-
fault spectrogram time length for a song was 15,502. How-
ever, it would be resource-demanding if we used such a large
array of numbers in the neural network (i.e., 129 x 15,502).
Therefore, we used a resizing image layer to condense the
spectrogram before fitting the features in the convolutions,
and the time axis was resized to 2,048 features. For the
“mixed” dataset, the spectrogram was processed through
one-channel input. For the “sep” dataset, because there are
four waveforms corresponding to four separate instruments,
each waveform was converted to a separate spectrogram and
concatenated in the channel axis. Therefore, although the
pair of Convolution Recurrent Neural Networks have dif-
ferent input channel sizes, both their architectures stay the
same.

The input features in Figure 1 go through 5 blocks of con-
volution; each block contains 2 groups of convolution layers
followed by a ReLU layer, and there is a max pooling layer
at the end of each convolution block. The convolution layer
in the first group has a kernel of 5-by-5, whereas that same
layer in the second group has a kernel of 1-by-1. This point-
wise convolution (Howard et al. 2017) serves as the linear
transformation for each pixel with the vector formed by all
features/channels/neurons for that pixel position. The num-
ber of features/channels/neurons is also noted in the figure.
For the last convolution block, the convolution layer in the
first group has a 3-by-3 kernel instead. After the last max
pooling layer, the feature vector is flattened and transposed
(permute layer) to fit in the 3 LSTM layers with 256, 128,
and 64 neurons respectively with Tanh activation. The out-
put of the LSTM layers is then fitted into 3 Dense layers with
512, 256, and 64 neurons respectively with ReLU activation
before going through the last Dense layer that has 4 out-
puts (mean and standard deviation of valence and arousal)
with no activation (linear transformation). The model has a
total of 5,966,116 parameters. We used the Adam optimizer
(Kingma and Ba 2015) to update the gradient in the network.
Each Convolution Recurrent Neural model was trained for
77 steps per epoch for four epochs. We also recorded the pre-
diction error with the Mean Square Error function for every
seven steps, and the loss pattern can be observed in Figures 2
and 3.

For the Random Forest (RF), we used the Random For-
est Regressor supported by the Scikit-Learn library. Our RF
model had 100 trees in total, and we used Mean Squared
Error as the loss function. In order to ensure all leaves are
pure, we did not set any limitation on the depth of trees—
the trees kept expanding until all leaves are pure or had less
than 2 samples, which is also the min samples split hyper-
parameter when the minimum number of samples per leaf
was set to 1. Furthermore, to utilize all features extracted,
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Iteration Emixed Esep Mmixed Msep Wmixed, sep

1 0.948 1.783 0.526 1.423 0.000
2 1.075 0.992 0.570 0.753 0.512
3 0.890 1.073 0.590 0.686 0.033
4 0.846 1.037 0.604 0.804 0.002
5 0.775 0.832 0.526 0.626 0.004
6 0.703 0.945 0.530 0.647 0.000
7 0.829 1.666 0.567 1.130 0.000
8 1.012 0.994 0.644 0.589 0.190
9 1.195 1.968 0.740 1.061 0.000
10 1.107 1.272 0.712 0.836 0.006

Table 1: Statistics of all KL Divergence when using Convo-
lution Recurrent Neural Network to evaluate mixed instru-
ment dataset and separate instrument dataset.

Iteration Emixed Esep Mmixed Msep Wmixed, sep

1 2.172 2.035 1.336 1.151 0.020
2 1.961 1.875 1.373 1.302 0.083
3 2.369 2.270 1.530 1.539 0.466
4 2.097 1.882 1.180 1.076 0.018
5 2.476 2.385 1.399 1.332 0.203
6 2.371 2.247 1.465 1.288 0.128
7 2.120 2.199 1.230 1.237 0.549
8 2.376 2.350 1.261 1.272 0.714
9 2.135 2.120 1.239 1.361 0.862
10 2.440 2.446 1.129 1.101 0.932

Table 2: Statistics of all KL Divergence when using Random
Forest to evaluate mixed instrument dataset and separate in-
strument dataset.

we set the hyper-parameter Max Feature to None or 1.0 as
default.

In terms of training the RF models, we also had a pair
of models for different inputs (one for “mixed” and one for
“sep”). For the original “mixed” data, we used all 6,373
features extracted with OpenSMILE to fully demonstrate
PMEmo’s capability in MER tasks (Zhang et al. 2018).
Therefore, the input was a two-dimensional matrix with
the shape of (num samp x 6,373), which is the number of
samples-by-the number of features. Similarly, the input for
the “sep” data was also in two dimensions with the number
of samples-by-the number of features, respectively. How-
ever, in order to help the RF model learn relationships be-
tween each instrument that might affect the perceived emo-
tion, we concatenated all features from the four separated
waveforms into one matrix. So, the input data for this model
is 6, 373 ∗ 4 features, shaping the input as (num samp x
25,492). The output of each RF model is similar to our Con-
volution Recurrent Neural Network models, which is a two-
dimensional array with shape (out samp x 4): arousal mean,
valence mean, arousal standard deviation, and valence stan-
dard deviation.

We performed model training on each iteration and vali-
dated on the respective testing set of that iteration. Our last
step was to calculate the KL Divergence using predicted and

ground truth statistics as in Equation 1 for both Convolu-
tion Recurrent Neural Network and Random Forest MER
models using either “mixed” or “sep.” For each iteration,
we also plotted the histogram of KL Divergences computed
from the result prediction of model pairs (“mixed” or “sep”
datasets) for both Convolution Recurrent Neural Network
(ten cross-validation iterations) and Random Forest (ten
cross-validation iterations). To plot these non-discrete val-
ues in a histogram, we divided each particular histogram’s
KL Divergence domain into thirty bins. We visualized the
results of all ten iterations per approach as shown in Fig-
ure 4. After that, we computed the mean and median KL
Divergence for each iteration’s model trained on different
datasets. We also computed the Wilcoxon test p-values.

5 Results

We achieved convergence in training all the Convolution Re-
current Neural Networks and computed the Mean Square Er-
ror on the testing set for each iteration in 10-iteration cross-
validation. The mean loss for ten iterations converged at 0.04
and 0.05 for the model trained on the “mixed” dataset and
the model trained on the “sep” dataset, respectively. The
convergence of the mean loss can be seen in Figures 2 and 3.
Similarly, for the Random Forest, the two models converged
at 0.03 for both the models trained on the “mixed” and “sep”
datasets. This shows that our models identified a pattern un-
der the loss criteria that maps music waveforms to emotion
distributions.

In Tables 1 and 2, we denote “Iteration” as a full exper-
iment run with randomized training and testing set (Sec-
tion 4) following the Monte Carlo Cross-Validation (Xu and
Liang 2001). We denote Edataset as the expected value and
Mdataset as the median value when evaluating the correspond-
ing dataset’s distribution of KL Divergences. We also denote
W as the p-value of the Wilcoxon Signed Rank Test.

As can be seen from the distributions in Figure 4 and the
mean of KL Divergences in Table 1 for Convolution Re-
current Neural Network, the model trained on the “mixed”
dataset has a higher frequency of low KL Divergences than
the model trained on the “sep” dataset. We notice that al-
most all the mean and median KL Divergences for the mod-
els trained on “mixed” dataset are lower than those for the
models trained with “sep” dataset. The probability that the
MER models for the “mixed” and “sep” datasets have the
same KL Divergences from the ground truth is less than 1%
in seven of the ten iterations, but two of the iterations have
a greater probability that the differences in KL Divergences
could be a consequence of random chance.

On the other hand, in the Random Forest statistical re-
sults (Table 2), most of the Wilcoxon p-values are great
enough to imply that the differences in KL Divergences be-
tween the “mixed” and “sep” models from the ground truth
might be random chance. Figure 4 presents further evidence
as the two distributions look very similar in most iterations.
This means that there is little-to-no difference between the
Random Forest models (using either the “mixed” or “sep”
dataset) when predicting music emotion.
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Figure 4: 10-iteration cross-validation of KL Divergence Distribution Comparison for Convolution Recurrent Neural Network
(first two rows) and Random Forest (last two rows). Blue shows the KL Divergence distribution of model evaluation on the
mixed instrument dataset. Orange shows the KL Divergence distribution of model evaluation on the separated instrument
dataset. The x-axis shows the KL Divergence, and the y-axis shows the frequency of that bin. The KL Divergence domain was
divided into thirty bins.

6 Discussion
Based on the results of the Wilcoxon Signed Rank Tests, we
have empirical evidence that for the Convolution Recurrent
Neural Network, it is more accurate to predict music emo-
tion with the mixed instrumental waveform rather than con-
sidering each instrument separately. On the other hand, we
have empirical evidence that for the Random Forest, neither
representation of the waveform can predict music emotion
more accurately. Despite the psychological evidence that
people account for timbre when perceiving emotion in mu-
sic, we were unable to implement this phenomenon within a
machine learning framework using our approach.

The design of the “sep” dataset in this research context
can be considered naı̈ve because it only has three types of in-
struments (vocal, drum, and bass) and an “others” category
for all other timbres. This might not be sufficient for the mu-
sic in the PMEmo dataset. In particular, the “other” wave-
forms are combinations of multiple instruments that cannot
be extracted from the mixed waveform. The experiments in
this paper took the form of training our “sep” model with a
few separated music sources, but one of the waveforms was
still a mixed waveform. Therefore, we hypothesize for fu-
ture work that the “sep” dataset did not fully represent the
actual “instrumentally separated” dataset distribution as we
meant for it to be. The lack of a robust dataset might leave
our outcome inconclusive, but it has laid the groundwork for
further avenues of investigation.

7 Conclusion
Inspired by psychology research about how people perceive
emotion in music, we hypothesized that machine learning
models that perceive music emotion will have better perfor-

mance when we use separated instrumental sources/wave-
forms. We proposed two machine learning algorithms to test
this hypothesis: Convolution Recurrent Neural Network and
Random Forest. In order to compare the performance and
determine which model was better in predicting music emo-
tion, we introduced the use of KL Divergence to assess sta-
tistical representations for the uncertainty over music emo-
tion regression. Statistical analysis of the KL Divergence re-
sults presented evidence rejecting our hypothesis.

This work provides a lot of interesting questions for fu-
ture research, and there are several directions that we can go.
First, further work regarding domain adaptation or dataset
distribution shift detection for the music datasets could be
done because the pretrained Wave-U-Net model was trained
on MUSDB18 (Stoller, Ewert, and Dixon 2018), but was
evaluated on the PMEmo dataset (Section 3). Another direc-
tion is to consider other machine learning algorithms, fea-
tures, and/or neural network architectures to better observe
the patterns related to the statistical distributions for emotion
annotations. Another direction is to introspect on our results,
inspecting every song that has a large KL Divergence in one
of the models; there might be something to learn about when
the model(s) each perform well or fail. Each of these meth-
ods could lead to a further understanding of how to make au-
tomated music emotion recognition better consider the fac-
tors that humans use for the task.
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and Sainath, T. 2019. Deep learning for audio signal pro-
cessing. IEEE Journal of Selected Topics in Signal Process-
ing, 13(2): 206–219.
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